CLIP-170 recruits PLK1 to kinetochores during early mitosis for chromosome alignment.
نویسندگان
چکیده
The cytoplasmic linker protein (CLIP)-170, an outer kinetochore protein, has a role in kinetochore-microtubule attachment and chromosome alignment during mitosis. However, the mechanism by which CLIP-170 is involved in chromosome alignment is not known. Here, we show that CLIP-170 colocalizes with Polo-like kinase 1 (PLK1) at kinetochores during early mitosis. Depletion of CLIP-170 results in a significant reduction in PLK1 recruitment to kinetochores and causes kinetochore-fiber (K-fiber) instability and defects in chromosome alignment at the metaphase plate. These phenotypes are dependent on the phosphorylation of CLIP-170 at a CDK1-dependent site, T287, as ectopic expression of wild-type CLIP-170, but not the expression of a non-phosphorylatable mutant, CLIP-170-T287A, restores PLK1 localization at kinetochores and rescues K-fiber stability and chromosome alignment in CLIP-170-depleted cells. These data suggest that CLIP-170 acts as a novel recruiter and spatial regulator of PLK1 at kinetochores during early mitosis, promoting K-fiber stability and chromosome alignment for error-free chromosome segregation.
منابع مشابه
Evidence for a Role of CLIP-170 in the Establishment of Metaphase Chromosome Alignment
CLIPs (cytoplasmic linker proteins) are a class of proteins believed to mediate the initial, static interaction of organelles with microtubules. CLIP-170, the CLIP best characterized to date, is required for in vitro binding of endocytic transport vesicles to microtubules. We report here that CLIP-170 transiently associates with prometaphase chromosome kinetochores and codistributes with dynein...
متن کاملUsp16 regulates kinetochore localization of Plk1 to promote proper chromosome alignment in mitosis
During the G2 to M phase transition, a portion of mitotic regulator Plk1 localizes to the kinetochores and regulates the initiation of kinetochore-microtubule attachments for proper chromosome alignment. Once kinetochore-microtubule attachment is achieved, this portion of Plk1 is removed from the kinetochores as a result of ubiquitination. However, the crucial molecular mechanism that promotes ...
متن کاملPhosphorylation of CLIP-170 by Plk1 and CK2 promotes timely formation of kinetochore-microtubule attachments.
CLIP-170 is implicated in the formation of kinetochore-microtubule attachments through direct interaction with the dynein/dynactin complex. However, whether this important function of CLIP-170 is regulated by phosphorylation is unknown. Herein, we have identified polo-like kinase 1 (Plk1) and casein kinase 2 (CK2) as two kinases of CLIP-170 and mapped S195 and S1318 as their respective phosphor...
متن کاملPolo-like kinase 1 facilitates chromosome alignment during prometaphase through BubR1.
Plk1, an evolutionarily conserved M phase kinase, associates with not only spindle poles but also kinetochores during prometaphase. However, the role of Plk1 at kinetochores has been poorly understood. Here we show that BubR1 mediates the action of Plk1 at kinetochores for proper chromosome alignment. Our results show that BubR1 colocalizes with Plk1 at kinetochores of unaligned chromosomes and...
متن کاملCLIP-170 facilitates the formation of kinetochore-microtubule attachments.
CLIP-170 is a microtubule 'plus end tracking' protein involved in several microtubule-dependent processes in interphase. At the onset of mitosis, CLIP-170 localizes to kinetochores, but at metaphase, it is no longer detectable at kinetochores. Although RNA interference (RNAi) experiments have suggested an essential role for CLIP-170 during mitosis, the molecular function of CLIP-170 in mitosis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 127 Pt 13 شماره
صفحات -
تاریخ انتشار 2014